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Abstract. A one-parameter family of approximations of the initial Cauchy problem for the 
Dirac equation in (3 + 1) spacetime dimensions is given. The approximation is defined in 
terms of the mean translation operator G( f ,  y ) f =  ( 4 ~ p ) ~ ’ A  j ,y(=p gf(y - ru )  dS. The family 
is indexed by the ’speed’ p. The main result is that the approximation converges to the 
solution (in the L,-norm) if p 2 &c, c being the speed of light. 

1. Introduction and summary 

It is well known that Feynman and Hibbs approximated the solution of the one- 
dimensional Dirac equation by suitably defined integrals over the space of a polygonal 
path which a particle can follow in order to go from one point to another, which means 
that it moves backwards and forwards with constant speed. So this approximation has 
been constructed by means of the concept of ‘particle’. However, if we consider the 
basis of quantum mechanics and the dual behaviour of matter, we can think of an 
approximation in terms of the concept of ‘wave’. In fact, we interpret the approximation 
from [ l ]  in this way when it is considered for one dimension. Unfortunately, this is 
not true in the multidimensional case. Nevertheless, it is true that the approximation 
can be expressed in terms of a superposition of functions of the formf(x - t u ) ,  Y being 
a vector in the three-dimensional space of a fixed length / V I  = p. In the one-dimensional 
case p and U can be interpreted as wave speed and propagation direction, respectively. 
In addition, U takes the values p or -p,  i.e. there are only two directions, which means 
the set of directions is naturally discrete. In contrast, a continuum of directions will 
be found in the three-dimensional case (of course, without the terms wave and 
propagation). Therefore, it must be decided if the set of directions is discrete or not. 
By the way, in the approximation (constructed from the formal solution of the Dirac 
equation obtained with the Fourier transform) from [ l ]  only eight values of U were 
considered, namely their directions are determined by the centre of a cube and its 
vertices, and their length is p = &c (where c is the speed of light), i.e. the set of 
directions has been discretised. In contrast, in the approximation (whose construction 
is based on the expressions of the partial derivatives as an average of the directional 
derivatives) from [2] all values of U are permitted. Here, we have not opted to discretise 
it, as well as considering an arbitrary p. In summary, we give an approximation of 
the solution of the initial Cauchy problem for the Dirac equation in 3 +  1 spacetime 
dimensions (see [l]). The approximation is in terms of suitably defined integrals over 
finite-dimensional spaces which can be interpreted as spaces of polygonal paths 
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consisting of segments of arbitrary direction. All segments have a common fixed speed 
p. The approximation converges to the solution (in L,-norm) if p 3 &c, c being the 
speed of light. 

Our approximation can be obtained by modifying that from [ 11 (see (20)). Fortu- 
nately, after modifying it, we have found that several definitions and some results are 
useful in developing this paper, In order to avoid redundancy, we do not reproduce 
them here (the reader can see them in [l]) .  Incidentally, we use the same notation as 
in [l]. On the other hand, large parts of some proofs are nearly identical with some 
parts of the proofs given in [ 11. In view of this, we will only provide a sketch of those 
proofs here. 

Notwithstanding the similarity between our work and that in [l] ,  there are two 
important differences. To begin with, the approximation given in [ 11 involved paths 
whose segments were parallel to the axes of a fixed reference frame, while here the 
directions of segments are arbitrary. Secondly, we investigate a family of approxima- 
tions indexed by the ‘speed’ p, which leads to the interesting conclusion that there is 
a minimum allowable speed, out to be greater than the speed of light. The work in 
[ l ]  was restricted to one fixed value of p. 

The existence of the minimum allowable segment speed, which equals V ~ C ,  was 
discovered by Jacobson (see [2]). However, we use a different approximation from 
that of Jacobson and again it turns out that the minimum speed is &c. In addition, 
we find that our approximation can be expressed in terms of the amplification matrix 
defined by Jacobson (see equation (18) from [2]). 

Our approximation depends on the electromagnetic (gauge) potentials which enter 
the formulae via the matrix value factor A given in equation (2.1) (the same factor 
appears in equation (20) from [l]) .  Nevertheless, it was suggested by Feynman (see 
[3]) that the potentials result in multiplication of each path C by a scalar (rather than 
a matrix) factor exp(-ie jc A , ( x ( T )  dx’’(7)) (the notation was used by Jacobson in 
[2]). In our case, we deal with integrals over finite-dimensional spaces rather than 
integrals over spaces of paths. This causes an amplitude for each path not to be defined 
by our approximation, which should be considered as a mean amplitude for the set 
of all polygonal paths consisting of n segments. Thus, in an electromagnetic potential 
a = ( a , ,  a2 ,  a3) the mean amplitude for the set of all polygonal paths consisting of n 
segments is multiplied by a factor A. This factor can be expressed only in terms of 
the combination Z:=, akak for a short ‘time’ 1. 

2. Definition of the approximation E ( n ,  T) 

In [ l ]  SuArez has expressed the operator G(t, e )  as the mean of translation operators 
(see equations (1) and (20)). These translations were parallel to the axes of the fixed 
frame of reference (therefore, there are eight of these operators). We now define for 
each positive number p the operator G( t ,  * ) in a space of continual functions of R3 by 

G(t, y l f=  (4.rrp)-’A (2.1) 

where 
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(see equation (20) from [ l ] ) ,  d S  is the area element of the sphere of radius p ,  the 
matrix valued function g is defined by 

where I is the 4 x 4 identity matrix and 6 is a positive number which satisfies S p  = 3, 
vk, k = 1, 2,3 are coordinates of the vector U of R3, which is defined by 

(2.3) 

and ak, k = 1,2,3, are 4 x  4 Hermitian matrices which satisfy equation (2) from [l]. 
Note that the operator G(t,  a )  is again a mean of translation operators, but the 

directions of these translations are now arbitrary. 
In addition, we can write 

U =  COS 4, sin q5 cos 8, sin q5 sin 8 )  8 E [0,271], q5 E [0, T]  

3 

g =  n ( z - S p - ' v e k a k )  
k = l  

(2.4) 

where the vectors ek ,  k = 1,2,  3, form the usual basis for R3. 
We define the approximation E (  T, 7)  on C0(R3) as in formula (3) from [l], namely 

E ( T, 7 )  f ( y ) := G( 7 - t k  , y ) G( ?k - t k  - 1 , X 1. . . G( t l  - t o ,  x ' ) f (2.5) 

where T = { t o ,  r , ,  . . . , t r}  is a partition of [0, SI, T E ]fk, f k + l ]  and f E  

In this paper we denote the inverse, the adjoint and the norm of a matrix T by 
T- ' ,  T* and IT/,  respectively. The latter is defined by /TI = s u p ~ ~ l = ~  /Tzl where /zI 
denotes the Euclidean norm of vector z E C4. We will employ the usual notation for 
the set of bounded operators on L 2 ,  namely B(L,).  Given T E  B ( L 2 ) ,  the standard 
norm operator of T is defined and denoted by 

(2.6) II TI1 = ,,;;PI II Tf II 
where l l f l l  denotes the L2-norm o f 5  

Remark2.1. Note that, if T i s  a 4 x 4  matrix, the function defined by ( T f ) ( y ) : =  T f ( y ) ,  
y E R3, since /I Tf )I S I TI I( f ( 1 ,  belongs to L 2 ,  i f f €  L 2 ,  implies that the map f~ Tf; which 
we still denote by T, belong to B ( L 2 )  and its operator norm is not greater than ITI. It 
is not hard to prove 11 TI1 = I TI. 

Remark 2.2. Note that, i f f  E CO@') has support contained in R, then G(t, .)f has 
support contained in the neighbourhood B(R, t )  of R. Consequently, E ( n ,  ~ ) f  has 
its support contained in the neighbourhood B(R, T) of R. 

Remark 2.3. Note that, since 4, ak ,  k = 1,2,3, are real valued functions, the hermiticity 
of ak,  k = 1,2,3, implies that IAzl= Iz/ for all z E C4. Here I I denotes the Euclidian 
norm of C4. 

3. Properties of the operators G(t ,  .) and E ( n ,  7 )  

In this section, we need some previous definitions and notations. To begin with, B" 
is the matrix-valued function defined by the 4 x 4  matrices ak:  

(3.1) 
B " ( p ) : =  c p / ,  . . . p / , , a r , .  . . a r " n = 0 ,  1 , 2 , 3 , p ~ ~ ~  

I ,  < ... < /,, 
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I where Bo( p )  := I = identity 4 x  4 matrix, B'( p )  := Z:=, p 1 a  . B,, IBI, are the functions 
defined by the 'velocity' p, spherical Bessel functions of the first kind 

jo( z)  = sin z/ z 

j2(z)  = [(3 -z2) sin 2-32  cos z]/z3 

j3 (z )=[ (15 -6z2)  sin z - ( 1 5 - z 3 )  cos z]/z4 

j l ( z )  = (sin z - z cos z)/z' 

and evaluated at time f :  

(3.2) 

(3.3) 

(3.4) 

where p*:=p/IpI ,  and IBI", n = O , .  . . , 3 ,  are defined by 
3 

(lBl"(P))* := c p:, . . . p:. p a 3  

lBlO( P) = 1 lBl'(P) = IPI. (3.5) 

I ,  <. . . < I,, 

Here, p I ,  I = 1 ,2 ,3 ,  are the coordinates of the vector p and, finally, ( , ) denotes the 
Euclidian inner product of C4. 

Remark 3.1. It is clear that IBl"(p)  Q I p l " / m ,  n = 0, 1 ,2 ,3 .  Consequently, 

l B l " ( j 3 ) Q l / m  for all p € ( W 3 .  (3.6) 

The operator G( f, ) given in [ 11 turned out to be an isometry as well as the approxima- 
tion (see lemma 1 from [l]). In our case, G(t ,  a )  does not have this property. 
Nevertheless, we will be able to show the following lemma. 

Lemma 3.1. 

IIG(f,.)fll= I I I ~ I J I I  f c L 2  
where denotes the Fourier transform off  (see (7) from [l]). 

(3.7) 

The latter is a consequence of the next result. 

Lemma 3.2. 

G( t ,  . I f  = As-'  ([ n = O  (-ia)nJn(rplpl)Bn(p)] ?) f c  S(R3) (3.8) 

where 9-' and S(R3)  denotes the inverse of the Fourier transform (see (8) from [l]) 
and the space of the functions of rapid decrease, respectively. 

We can now proceed to prove the formula (3.7). 

Proof of lemma 3.1 [ l ] .  Fix f E L 2 .  Let fc(W+. Then, by (3.3) and (3.8), obtain that 
11 G( t, ) f  11 = 11 $ - I (  B,( p ) f (  p)II. Now by means of the Plancherel theorem (see proposi- 
tion 1 from [l]) and (3.3), we prove formula (3.7). 
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Remark 3.2. Note that formula (3.8) permits us to extend the operator G(t ,  . )  over 
L 2 .  Consequently, formula (3.7) is true for f~ L z .  

Remark 3.3. Note that, since A(s, p )  is an isometry in C4 for each s E R+ and p E R3, 
lemma 3.2, together with (3.3), implies that I/G(t, .)G(s, = 
/lG( t, . ) ~ - ' ( s ,  ) ~ ( s ,  . ) f l l= 1 1  l ~ i , l ~ l ~ . f l l .  If 47 ak are constant functions, then we can 
continue this process to obtain, from (2.5), that 

(3.9) llE(.r, T 1 f l l  = I1 Ibk l ~ l l k - l ~ ~ l  . . . l ~ l l , - l " ~ l l .  

Now, we will give a proof of lemma 3.2. The next observations and results will lead 
us to it. 

On account of the hermiticity of ak,  since (ak)'  = I (see (2)  from [ l]) ,  we have that 

( a ! ' .  , . a " ' ) * ( a k l .  . . a k " ' ) f ( - l ) m + n ( a k ' .  . . ak'")*(a' '  , . . (YI")=28mn8j,k,/ 

where I ,  < . . . < I , ,  k ,  < . , . < k,, m, m = 1,2,3.  These results, together with (3.1), imply 
that 

Proposition 3.1. If a,, a , ,  az ,  a3 are complex numbers satisfying 

for m 7 n = 0 ,  . . . ,  3 dman+(-l)"+"-'amdn = o  
then I( a n B " ( P ) )  4 1' = ( n = O  f l ~ n l z ( I ~ l n ( ~ ) ) ' )  (41' p E R3,4 E c4. 

n = O  

Here, the overbar denotes the complex conjugate. 

(3.10) 

(3.11) 

(3.12) 

Proof: Fix p E R3. Let q E C4. Observe that 

where (, ) denotes the Euclidian inner product of C4. Now, by means of the definition 
of an adjoint matrix, and (3.10), it follows that 
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Remark3.4. The numbers a ,  = (-ia)"j,( w ) ,  n = 0 ,  . . . , 3, w E Rf, satisfy the relationship 
(3.11). Thus, in view of (3.12), we obtain 

l&(p)l= IBlAp) p a 3 ,  t € R ' .  (3.13) 

The next result is an approach to lemma 3.2. 

(3.14) 

ProoJ On account of the Plancherel theorem and formula (2.4) we obtain 

G(t ,  y ) f =  (4.rrp)-'(2.x)"l'A exp[i(y - m l g ( U ) ? ( P )  dp. 

Interchanging the integrals in this expression, by means of the definition of the Fourier 
transform o f f  (see (7)  from [l]), we get formula (3.14). 

To obtain formula (3.8), we need to calculate the integral j l L . ~ = p  exp(-itup)g(u) dS. To 
perform this calculation, we replace up by (  TU)^, where T:R3- R3 is a linear transforma- 
tion. We choose T to have the following properties: T is an isometry of R3 (with 
Euclidian norm); the absolute value of the determinant of T equals one (Idet TI = 1) 
and the inverse linear transform of T equals the adjoint linear transformation of T 
( T I =  T*) .  Note that the latter implics the other properties. 

By means of the properties of T, we get 
c 

exp(-itl;p)g(v) d S  = J ldet T /  exp(-itpTv)g( TU) d S  J /L'I=p 1 TL.1 = 1 U1 = p 

exp( -iruT*p) d S  

exp(-ituT-'p)g( Tu) dS. 

=I bl=p 

= LP 
Now if, in addition, T fulfils T ( e , )  =$, from (2.3), it follows 

Our calculations now depend on the definition of g. 
By means of (2.2) and (3.15), we obtain 

J exp(-itup)g d S  = ( - 8 p - I ) "  J exp(-itplpl cos 4 ) ~ " (  TU) dS. (3.16) 

Next, we express the integrals on the right-hand side of (3.16) in terms of spherical 

j n ( z )  = ( 2 z / ~ ) - ' / ' j n + l / z ( z )  (3.17) 

l u ( = p  n = O  I 4 = P  

Bessel functions of the first kind. To do this, we regard the relationship 
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where jn+l,2(z) denotes a Bessel function of the first kind of order n +; (see, e.g. [4], 
p 541). The latter admits the following integral representation (see, e.g., [4], p 48 
equation (6)]): 

jn+l12(z) = [(.nz/2)'"(~/2)"/n!] exp(-iz cos 4 )  sin 2n+  1 4 d4,  (3.18) 

In view of (3.5) and (3.18), since T(e,)  =$, it follows 

exp( -iplplt cos 4 )  Bo( TU) d S  

) = ( 2 7 7 ~  1; exp(-iplplt cos 4 )  sin 4 d 4  I 

(3.19) 

exp(-iplplt cos 4 ) u  d S  

1 = B (277~' 1: exp(-iplp/t cos 4 )  cos 4 sin 4 d+T(e,)  

= P (477~ )jl ( P  I P I t )  B ' ( $1. 

In order to simplify the notation we denote j l v / = p  exp(-iplplt cos 4 ) v I , .  . . vI,, d S  by 

By means of (3.5), the linearity of T and the inner product imply that 
U/, . . . V I n .  

exp(-iplplt cos 4 )B" (  Tu) d S  1,h 

It is straightforward to verify that 

n = 2 , 3  1 = 1,2. v n - 2 u ;  = n 
U 3  

In addition, an integration by parts proves 

(3.20) 

(3.21) 

(3.22) 

In other cases, the integrals equal zero. 
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Taking into account the latter results, we get 

exp(-iplplt cos 4)B2( Tu) d S  

exp(-iplplt cos 4 ) B 3 (  Tu) d S  5,,-, (3.23) 

= k ,  c: k,<  k ,  (u:ek,T(el)ek,T(el)ek,T(el) 

3 3  3 

+ u l u :  C e k , , , T ( e l )  n = l  n e k , , T ( e l ) )  * 
m = 1 1 = 2  

n # m  

Now, we completely determine the linear transformation T. We only need to define 
T ( e 2 )  and T ( e , )  (see equation (3.15)). To begin with, we choose the vectors T ( e 2 )  
and T ( e 3 )  to be unitary (IT(e,) l= IT(e,)l= 1). Secondly, we choose the vector T ( e 2 )  
to be orthogonal to the orthogonal projection of p on the subspace spanned by e, ,  e3 
(lin(e,, e 3 ) ) .  Finally, T ( e 3 )  is chosen to be orthogonal to both T ( e , )  and T ( e 3 ) .  It is 
straightforward to show that this linear transformation fulfils 

3 c e k , T ( e l ) e k , T ( e l ) = O  k l <  k2 
1 = 1  

(3.24) 
3 3  3 3 

m = 1 1 = 2  n = l  n = l  
C ekmT(e1) n ek , ,T (e , )+3  n e k , , T ( e l ) = O  k ,  < k, < k, . 

n # m  

In addition, T satisfies T* = T-'. 

of (3.24), imply 
Finally, in view of (3.21) and (3.22), the equations in (3.23)), together with these 

exp(-idplt cos 4 ) B " ( T u )  d S  = (4.rp)pnj,(plplf)Bn(p*) n = 2,3. (3.25) 

Now, inserting (3.19) and (3.25) into (3.16), and later into (3.14), we finally get 

Next we will obtain an estimate for ( 1  G( t, * ) f l l k  (see equation (6) from [ 11 for the 

Lp 
lemma 3.2. 

definition of 11 I l k ) .  To do this we require some previous inequalities. 

Proposition 3.3. 

I ~ , l ( p )  < 1 for all t E R+, p E R~ 
if and only if 6 Sa. 

(3.26) 

Proof: Let t ER+, and p€(W3.  Then, by formulae (3.6) and (3.13), we get (B,I2(p*)s  
Z',=, ( S 2 " / n ! ) j ; ( t p l p l ) .  Now, on account of the relationship (3.17) and Lommel's 
series of squares of Bessel functions (see, e.g., [3], pp 151, 152, equation (2)) ,  we get 
I ; ~ = P = o ( 3 n / n ! ) j 2 , ( t p l p ( ) ~ I ; ~ = o ( 2 n + l ) j 2 , ( t p l p l ) =  1. Thus, if S 2 s 3 ,  then I B , ( p ) I s  1 for 
all t E R+, p E R ~ .  Conversely, if s > A, on account of 

1 

I B, ( p*> I' 3 C j2, ( t~ I P I  ) ( I B I n  ( P ) )* = j3 t~ I P I )  + a2j?( t,, I p I (3.27) 
n = O  
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(see (3.4)) and the relationship limz+o ( 1  - j i ( z ) ) / j i ( z )  = 3, we get t E R', p E R3 such 
that ( B , ( p ) l >  1 .  

Remark 3.5. Note that, if T = { t o , .  . . , t l }  is a partition of [0, s], which satisfies 
tl - t l - ,  = t l - ,  - = , . . = t ,  - to = s / l =  E ( T )  < l / p  (i.e. T is a uniform partition), and 
T & ( f k ,  f k + l )  for some 1 s k s  1, then, by (3.13) and (3.27), we get 

l l E ( T ,  ')f1I2= 11 ~ B ~ T - ~ A ~ B ~ ~ A - ! A - I  ' '  ' I B l r l - 1 0 f l 1 2  

= It IBlr-rA(lBIE~~~)kj.l12 
2 . 2  1/2 2 2 k / 2  

2 I I ( ~ ~ + s  J J  [ ( ~ - t k ) p I - I ~ ( j i + ~ j l )  ( P E ( ~ ) I * I ) ? I I ~  
3 j- (A+ S 2 W 2 [ ( 7 -  tk)lPI/&(..)l 

IPl<? 

x (A+ s2j:)k'2(Ip/)lj.(p/pE(..))12 dp (3.28) 

(see (3.13)) where 77 is any positive number which we now determine. Because the 
derivative of $+ S 2 j :  at zero is positive, by the continuity of its derivative, there is a 
positive number, which we denote by 77, such that the former is an increasing function 
in [0, 773. Thus, from (3.27) we obtain 

l l E ( ~  71f1122 (P&(..))-~ (ji+ s2j: )k( lpl ) l j . (p/PE(. . ) )12 dp 
lPl<? 

V ( p ) I  dp. (3.29) 

Now, by means of proposition 3.3, formula (2.5), lemma 3.1 and the Plancherel 
? E (  r ) / 2 ' i ' =  I p i s  E 

theorem, we get lemma 3.3. 

Lemma 3.3. If S s 3  then the operators G(t,  e ) ,  E(T, 7) are bounded. Their norm is 
less than 1 ,  i.e. 

I1 G( t ,  * lfll s llfll IlE(T T)fll s llfll for all f~ L z .  (3.30) 

Remark 3.6. The inequalities in the last lemma are as strong as equations (12) and 
(13) from [l]. For instance, if 9, ak are bounded functions in C"(fl) and have all 
derivatives up to order m bounded, then the first inequality of (3.30) implies that 

for all f~ C,"(R) (3.31) 

where K is the same function as in lemma 2 of [l]. This can be proved, proceeding 
as in the proof of lemma 2 of [ l ]  provided that we replace, respectively, A and g by 
A' and g' in formula (2.1), which we have defined in this way. To obtain A', j = 1 , 2 , 3 ,  
we change the sign in the exponentials of A as in ( 1 1 )  from [l]. Now, if j = 4 ,5 ,  6, 
we define g' = uj-,g(g' = g for j = 1 , 2 , 3  and A' = A for j = 4 , 5 , 6 ) .  Then, we obtain 
the operators G'( t ,  y ) .  

Remark 3.7. Note that formula (3.14) implies that 

/ I  E ( ~ 9  .If11 m s K llfll m 

Il(G(t, . ) - G J ( t o ,  *)fll 

(3.32) 



2350 C Gulmaro Corona 

Lemma 3.4. The maps f -  G'( t ,  ) are continuous on [0, +CO) in the norm of operators, 
provided that 4, a ,  are bounded functions and S s 3. 

Proof. Fix toe [0, +CO). Let t E lF+, f~ L 2 .  Because 4, ak are bounded, from (3.30), 
we, for each positive number, can find a positive integer N,  which does not depend 
on t and t o ,  such that 

IA( 2, P) - A( t o  9 P)121 G (  4 P ) f (  P)I2 dP s 7*/4. 
I P ' >  N 

On the other hand, since ( A ,  zo, z ,  , z2, z3)- e h e z o  II',=, exp(zkak)  is a continuous 
function over C5 (and thus uniformly continuous on any compact set), the boundedness 
of 4, ak and (3.30) permits us to find, for each positive number 7, a positive number 
r, such that if It - tol < r then 

" 

Thus, ll(A'(r, + ) - A J ( t o ,  . ) ) G ( t ,  * ) f l i  s ( ~ / 2 ) J l f 1 ( + 7 / 2 .  To estimate the second termon 
the right-hand side of (3.32), we proceed as in the first estimation. Thus, from (3.32), 
we find that 11 G( f, ) - G( to ,  - ) f l l  zs E l l f l l +  7, provided that It - tol < r. Hence, we con- 
clude the lemma. 

Remark 3.8. Note that the definition of G'( t, ) implies that G'(0, - ) = I = identity 
operator, for j = 0, .  . . , 3  and G'(0, . )  = aj-3 (the operator defined by the matrix a,-3; 
see remark 3.21. 

Remark 3.9. Note that lemma 3.2, together with (3.17), (3.18) and (3.25), implies that 

G(t ,  * I f =  (1+b2t2 ) - 'AS- ' (A , (0 ) )+o( t )  f E CO(fl) (3.33) 

where A,( p )  is the amplification matrix defined by Jacobson [2] in equation (18). Also 
observe that, since the amplification matrix can be interpreted as a mean amplitude 
for a set consisting of all polygonal paths of one segment, we can interpret formula 
(3.33) in the following way. In an external electromagnetic potential a = ( a , ,  a,, a 3 )  
the mean amplitude for each set consisting of all polygonal paths of one segment is 
multiplied by a matrix A (see equation (34) from [2]). 

Remark 3.10. Note that, i f f €  C0(n), then we can differentiate under the integral in 
(3.14) to obtain 

aA-*(t,  y)G( t ,  y)f/dt = - i F '  

for all t E R+, y E I W ~ .  

Remark3.11. Note that, i f f €  C0(n), the latter remark implies that aG(t,  y)f/at exists. 
In addition 

(3.35) 

Thus, if 4, ak and their first derivatives are bounded from lemma 3.3, we conclude 
that dG( t ,  . ) f / d t  E L 2 .  

a G ( t ,  Y )f/a t = A ( t ,  Y 1dA-I ( t ,  Y ) /a  + a.4 ( f ,  Y ) /a  tG ( t ,  Y If. 
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Remark 3.12. Note that, if T E  ( t k ,  t k t l )  where f k ,  t k + l  E T,  formula (3.14), together with 
(3.34), implies that 

E ( ~ , ~ + f ) f = G ( 7 + r , ’ ) E ( . i r ,  t k ) f  t E ( t &  - 7, f k + l  - 7) .  (3.36) 

Lemma 3.5. If 6 C 3, f E Co(fl) and 4, ak and their first derivatives are bounded then 
the function f -  E ( T ,  7 ) f  is differentiable as a function from R to L2. 

Proox In view of remarks 2.2 and 3.11, it is sufficient to prove that the function 
t -  G (  t ,  )f is differentiable as a function from R to L2. Fix f~ Co(fL), t E R+. Let 
U E Rf. By means of formula (3.14), together with (3.34) and (3.35), it follows that 

Il[G(t+ U, * 1 - G(t, * ) I / u  - [aG(f ,  . )f/atlfll 

c II [ (‘4 ( t + U 1, . ) - A ( 4 . ) I  / U - aA( t ,  . ) / a t  1 G ( t + U, * ) f  II 

Because of the boundedness of 4, ak and their first derivatives, from (3.30), the 
hypotheses of the dominant convergence theorem of Lebesgue are satisfied. Thus, 
from lemma 3.4, we prove lemma 3.5. 

Remark 3.13. Note that, by means of the Baker-Cambell-Hausdorft formula (see, e.g. 
PI  PP 120,144), 

(3.37) 

for short ‘time’ t. Here Go( t ,  - ) was obtained by putting ak = 0 in (2.1). Also observe 
that, because the factor of Go is an isometry in C4 (with Euclidian norm), formula 
(2.1) can be replaced by that of (3.37) without changing any result obtained in this paper. 

4. Main results 

We now prove that our approximation converges to the solution (in the L,-norm) if 
p 2 & c, c being the speed of light. We can now do this as in [ 11. Thus, we will not 
give complete proofs of the two following results. 

Theorem 4.1. Suppose 4, ak and their first derivatives are bounded. Moreover, assume 
there exists a sequence of partitions { T,}; with E (  T,)  + 0, and an operator E (  T )  such 
that, for each f~ CA(R3), 

ll(E(Tn, . ) -E(T) l f l l+o when E ( T , ) + O  (4.1) 
uniformly on T E  [O, 31. Then, if 6 6 3 ,  E ( T )  is the evolution operator for the Dirac 
equation (see equation ( 1 )  from [ l ] ) .  
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Sketch of the proof: Fix f~ C;(R3). Let n = { t o ,  . . . , tf,,} be a partition of [0, s]. Hence 
there is a fk,, such that T E  ( t k , ,  fk,,,,]. Now, the definition of the operator G’(t, a )  

together with (3.14) and equation (9) from [ l ]  permits us to proceed as in the proof 
of theorem 3 from [ 13. Thus, we obtain 

Wn, ,  r ) f / a T  

3 

+i 1 akak(Y) (Gk(T- tk , ,  Y)-G(T-t tk , ,Y)E(V, ,  h,)f 
k = l  

3 

- 1 [ G k ’ 3 ( 7 - f k , , , y ) - C Y k G ( 7 - f k , , Y ) 1 a E ( V n ,  t k n ) f / a x k  (4.2) 
k = l  

where H is the right-hand side of the Dirac equation (see equation (1) from [l]). 
Now, from (3.31), (4.1) and (4.2), lemma 3.4, together with remark 3.8,  implies that 

lim aE(T,,  T ) f / d T =  - H E ( T ) ~  (4.3) 
n-cO 

uniformly for [O,s] .  Due to lemma 3.5 it is possible to interchange the limit and 
differentiation in (3.3). Theorem 4.1 now follows. 

Now we can conclude the convergence of our approximation in the same way as in 
the proof of theorem 2 from [ l ]  (see lemma 3.3, inequality (3.31), remark 2.4, equation 
(4.3) and theorem 4.1). 

Theorem 4.2. Suppose that 4, ak are bounded functions in C 2 ( R 3 )  and have their first 
derivatives bounded. If, in addition, S C 3, then for eachfe L2(R3) ,  the approximations 
E(T, ,  T) converge in L,-norm to E ( T ) ~ ,  uniformly for T E  [0, s], when E( - , , )  converges 
to zero and where E ( T )  turns out to be the evolution operator for the Dirac equation 
(see equation ( 1 )  from [ l ] ) .  

The next result proves that there is a minimum allowable ‘speed’ p. 

Theorem 4.3. Suppose S > 3 .  If, in addition, we assume that 4, ak are constant 
functions, then there exists a sequence of partitions {T,}, of [0, s] with limflTcO E (  T,) = 0 
such that IIE(T,,, ~ ) f l l  =CC for all T E  [0, s]  andfE L, with inflpl<r, I f ( p ) l >  0 for 
some positive number 7. 

Prooj Fix E > 3 and f~ L, .  Let T E  (0, s]. Assume that T, = { t o , .  . . , t f , , }  is a partition 
of [O, s]. Then there exists fk, ,  such that T E  ( t k , , ,  t k , , , , ] .  If, in additio!, we assume that 
t f , , - t  ,,,_, = t f  ,,_, - f f , , - z = . . . = t l n - t O = s / n = ~ ( ~ , ) < l / p  and infl,l<7 p ( p ) l > O  for some 
positive number 7. Then, by remark 3.5 and (3.28), we obtain / [ E (  T, r)fll’s Cti , , rkn/k’ ,  
where r >  1 ,  c =37’ inflp~<r, ! j ( p ) J >  0. Hence, since limn+= t k ( l / S )  lim,+a k , / n  = r 
implies that k ,  = 00, we can conclude that llE( n, ~ ) f l l =  CO. 
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Remark 4.1. Note that all results of this paper can be extended to the d-dimensional 
Dirac equation. For instance, the operator G( t ,  ) should be defined by 

G ( t , y ) f =  A(S) - ’A  gf(Y - t u )  dS 

where d S  is the area element of a d-dimensional sphere of radius p. Formula (3.8), 
in this case, would be written as 

Here v = (d  -2)/2 and jn+” ,  n = 1,2 , .  . . , d are Bessel functions of the first kind. 
this case, the critical ‘speed’ is c which can be obtained by Lommel’s series 
squares of Bessel functions. 
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